
   

   

  

Procedural Fluency in Mathematics 
A Position of the National Council of Teachers of Mathematics 

 

Question 

What is procedural fluency, and how do we help students develop it?  

 

NCTM Position  

Procedural fluency is a critical component of mathematical proficiency. Procedural 

fluency is the ability to apply procedures accurately, efficiently, and flexibly; to transfer 

procedures to different problems and contexts; to build or modify procedures from other 

procedures; and to recognize when one strategy or procedure is more appropriate to apply 

than another. To develop procedural fluency, students need experience in integrating 

concepts and procedures and building on familiar procedures as they create their own 

informal strategies and procedures. Students need opportunities to justify both informal 

strategies and commonly used procedures mathematically, to support and justify their 

choices of appropriate procedures, and to strengthen their understanding and skill through 

distributed practice.  

 

Procedural fluency is more than memorizing facts or procedures, and it is more than 

understanding and being able to use one procedure for a given situation. Procedural 

fluency builds on a foundation of conceptual understanding, strategic reasoning, and 

problem solving (NGA Center & CCSSO, 2010; NCTM, 2000, 2014). Research suggests 

that once students have memorized and practiced procedures that they do not understand, 

they have less motivation to understand their meaning or the reasoning behind them 

(Hiebert, 1999). Therefore, the development of students’ conceptual understanding of 

procedures should precede and coincide with instruction on procedures. Although 

conceptual knowledge is an essential foundation, procedural knowledge is important in 

its own right. All students need to have a deep and flexible knowledge of a variety of 

procedures, along with an ability to make critical judgments about which procedures or 

strategies are appropriate for use in particular situations (NRC, 2001, 2005, 2012; Star, 

2005).   

 

In computation, procedural fluency supports students’ analysis of their own and others’ 

calculation methods, such as written procedures and mental methods for the four 

arithmetic operations, as well as their own and others’ use of tools like calculators, 

computers, and manipulative materials (NRC, 2001). Procedural fluency extends 

students’ computational fluency and applies in all strands of mathematics. For example, 

in algebra, students develop general equation-solving procedures that apply to classes of 

problems and select efficient procedures to use in solving specific problems. In geometry, 

procedural fluency might be evident in students’ ability to apply and analyze a series of 

geometric transformations or in their ability to perform the steps in the measurement 

process accurately and efficiently.  

 

Procedural fluency builds from an initial exploration and discussion of number concepts 

to using informal reasoning strategies and the properties of operations to develop general 

methods for solving problems (NCTM, 2014). Effective teaching practices provide 

experiences that help students to connect procedures with the underlying concepts and 

provide students with opportunities to rehearse or practice strategies and to justify their 

procedures. Practice should be brief, engaging, purposeful, and distributed (Rohrer, 
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2009). Too much practice too soon can be ineffective or lead to math anxiety (Isaacs & 

Carroll, 1999). Analyzing students’ procedures often reveals insights and 

misunderstandings that help teachers in planning next steps in instruction. In the same 

way, worked examples can serve as a valuable instructional tool, permitting teachers to 

understand how students analyze why procedures work or don’t work and consider what 

procedure might be most appropriate in a given situation (Booth, Lange, Koedinger, & 

Newton, 2013).  
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